You are here
News Release
Tuesday, July 12, 2016
Researchers make advance in possible treatments for Gaucher, Parkinson鈥檚 diseases
NIH scientists identify molecule that may impact serious neurological diseases
With assistance from a high tech robot, 最新麻豆视频 researchers have identified and tested a molecule that shows promise as a possible treatment for the rare Gaucher disease and the more common Parkinson鈥檚 disease. Ellen Sidransky, M.D., a senior investigator with NIH鈥檚 最新麻豆视频 Human Genome Research Institute (NHGRI), and her collaborators at the 最新麻豆视频 Institute of Neurological Disorders and Stroke (NINDS) and the 最新麻豆视频 Center for Advancing Translational Sciences (NCATS), published their findings June 12, 2016 in the Journal of Neuroscience.
鈥淚t鈥檚 really exciting to have found a molecule that theoretically could be widely available to treat people with these diseases.鈥
鈥Ellen Sidransky, M.D., Senior Investigator, NHGRI
鈥淯ntil now, drugs used to treat Gaucher disease have not been able to enter the brain and reach those neurons that are affected in the most severe forms of Gaucher disease or in Parkinson鈥檚 disease,鈥 said Dr. Sidransky. 鈥淚t鈥檚 really exciting to have found a molecule that theoretically could be widely available to treat people with these diseases. However, there鈥檚 a long distance between identifying this molecule and having an approved drug.鈥 Dr. Sidransky has conducted research on Gaucher disease for the last 28 years and made the connection between Gaucher disease and Parkinson鈥檚 disease in 2001.
Gaucher disease occurs when GBA1, the gene that codes for the protein glucocerebrosidase, is mutated. This protein normally helps cells dispose of certain fats (lipids), a type of waste produced by all cells. When a person inherits two mutated copies of GBA1, lipids accumulate and can cause symptoms such as enlargement of the spleen, frequent bleeding and bruising, weakened bones and, in the most severe cases, neurological disease. People with even one mutated copy of GBA1 are at higher risk of developing Parkinson鈥檚 disease, a common disorder characterized by tremors, muscular rigidity and slowed movements.
To better understand the connection between Gaucher and Parkinson鈥檚 diseases, NHGRI researchers used a labor-intensive technology to develop pluripotent stem cells (unspecialized cells that can develop into various specialized body cells). Elma Aflaki, Ph.D., a research fellow in Sidransky鈥檚 lab, created stem cells from the skin cells of Gaucher patients with and without Parkinson鈥檚 disease in the lab. She then converted the stem cells into neurons that had features that were identical to those in people with Gaucher disease. Neurons are nerve cells that transmit information via chemical messengers and electrical signals.
The researchers showed that the neurons from Gaucher patients, who also had Parkinson鈥檚 disease, showed elevated levels of alpha-synuclein. This is the protein that accumulates in the brains of people with Parkinson鈥檚 disease impacting neurons responsible for controlling movement.
The researchers then looked for a molecule that would help patients with mutant GBA1 break down cellular waste. In a process known as high-throughput drug screening, researchers at NCATS Chemical Genomics Center evaluated hundreds of thousands of different molecules. NCATS researchers Juan Marugan, Ph.D., Samarjit Patnaik, Ph.D., Noel Southall, Ph.D., and Wei Zheng, Ph.D., identified a promising molecule, NCGC607, in conjunction with researchers at the University of Kansas, Lawrence, which helps to 鈥渃haperone鈥 the mutated protein so that it can still function. In the patients鈥 stem cell-derived neurons, NCGC607 reversed the lipid accumulation and lowered the amount of alpha-synuclein, suggesting a possible treatment strategy for Parkinson鈥檚 disease.
鈥淭his research constitutes a major advance,鈥 said Daniel Kastner, M.D., Ph.D., NHGRI scientific director and director of the institute鈥檚 . 鈥淚t demonstrates how insights from a rare disorder such as can have direct relevance to the treatment of common disorders like .鈥
Researchers will next test the new molecule to see if it might be developed into an appropriate prototype drug for patients with Gaucher disease and Parkinson鈥檚 disease.
Gaucher disease affects an estimated 1 in 50,000 to 1 in 100,000 people in the general population. People of Eastern and Central European (Ashkenazi) Jewish heritage are more likely to get Gaucher disease. Parkinson鈥檚 disease affects 1.5-2 percent of people over age 60, and the incidence increases with age. In the United States, about 60,000 new cases are identified each year. Parkinson鈥檚 disease affects more than 1 million people in North America and 7-10 million people worldwide.
NHGRI is one of the 27 institutes and centers at the NIH, an agency of the Department of Health and Human Services. The NHGRI Division of Intramural Research develops and implements technology to understand, diagnose and treat genomic and genetic diseases. Additional information about NHGRI can be found at: .
is the nation鈥檚 leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.
About the 最新麻豆视频 Center for Advancing Translational Sciences (NCATS): NCATS is a distinctly different entity in the research ecosystem. Rather than targeting a particular disease or fundamental science, NCATS focuses on what is common across diseases and the translational process. The Center emphasizes innovation and deliverables, relying on the power of data and new technologies to develop, demonstrate and disseminate advances in translational science that bring about tangible improvements in human health. For more information, visit .
About the 最新麻豆视频 (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.
NIH…Turning Discovery Into Health庐